Tugas 2 Proposal TA C

 Metodologi dan Pembahasan

    metodologi penelitian pada tugas akhir yang akan dilakukan adalah sebagai berikut


proses tersebut meliputi : 

  • Praproses data
  • Partisi data
  • model training
  • evaluasi model

Metode yang digunakan menitikberatkan pada model DGCN atau Deep Graph Convolutional Network. Dimana pada penelitian yang dilakukan, akan dibandingkan penggunan BERT dengan pretrained model lainnya sebagai encoder. selain itu akan dimodifikasi bagian pada modul L2C dan dilihat bagaimana performa setelah dimodifikasi tersebut 


Daftar Referensi

[1]      N. K. Chauhan and K. Singh, 2018 International Conference on Computing, Power and Communication Technologies (GUCON). IEEE, 2018. doi: 10.1109/GUCON.2018.8675097.

[2]      T. Yang, J. Deng, X. Quan, and Q. Wang, “Orders Are Unwanted: Dynamic Deep Graph Convolutional Network for Personality Detection,” in Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence, The Thirty-Seventh AAAI Conference on Artificial Intelligence, 2023, pp. 13896–13904. Accessed: Nov. 23, 2024. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/26627/26399

[3]      M. A. Rahman, A. Al Faisal, T. Khanam, M. Amjad, and M. S. Siddik, “Personality Detection from Text using Convolutional Neural Network,” in 1st International Conference on Advances in Science, Engineering and Robotics Technology 2019, ICASERT 2019, Institute of Electrical and Electronics Engineers Inc., May 2019. doi: 10.1109/ICASERT.2019.8934548.

[4]      Z. Wang, C. H. Wu, Q. B. Li, B. Yan, and K. F. Zheng, “Encoding text information with graph convolutional networks for personality recognition,” Applied Sciences (Switzerland), vol. 10, no. 12, Jun. 2020, doi: 10.3390/APP10124081.

[5]      Z. Ren, Q. Shen, X. Diao, and H. Xu, “A sentiment-aware deep learning approach for personality detection from text,” Inf Process Manag, vol. 58, no. 3, May 2021, doi: 10.1016/j.ipm.2021.102532.

[6]      B. Khemani, S. Patil, K. Kotecha, and S. Tanwar, “A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions,” J Big Data, vol. 11, no. 1, Dec. 2024, doi: 10.1186/s40537-023-00876-4.

[7]      S. Saxena, “Deep dive into Confusion Matrix,” https://towardsai.net/p/l/deep-dive-into-confusion-matrix.

Comments

Popular posts from this blog

Tugas 2 PPB D

Tugas Proposal TA